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A linearized analysis of the two-dimensional double vortex sheet model of a jet 
shows that inviscid jet instabilities occur over a wide range of frequencies at all 
jet Mach numbers. No particular frequency for maximum growth rate exists 
unless finite shear layer thickness effects are considered. It is suggested that the 
model describes the essential characteristics of a real jet disturbed by long wave- 
length perturbations. The idea is advanced that the jet flow constitutes a broad 
band amplifier of high gain. Disturbances can grow rapidly to a size when non- 
linear effects bring about significant interaction with the mean flow. By seeding 
the jet with disturbances of a type that are highly amplified it is argued that 
gross features of the flow may be affected and that the jet may be rendered less 
noisy at high Mach number. It is argued that some of these ideas are supported 
by the observation that a supersonic jet diffuses at an unusually rapid rate when 
subject to the oscillatory condition known as ‘screech’. 

1. Introduction 
The time-dependent behaviour of high-speed jets is of great interest in the 

study of jet noise. In  this paper we study the possible role of instabilities that 
are driven by the velocity difference between the jet and the ambient fluid for 
arbitrary Mach number. The study is confined to a model of an infinite, two- 
dimensional, inviscid jet separated from the motionless ambient fluid by parallel 
plane vortex sheets. The model is, of course, chosen for analytical simplicity 
but it is intended to indicate well the qualitative features of real jet flows with 
unsteady disturbances of wavelength long compared to the shear layer thickness. 
Shear layers are known to have features independent of the velocity profile in this 
limit, a point demonstrated by the work of Lord Rayleigh (1945), Wille (1963), 
and Graham & Graham (1968). The shear layers of jets of engineering interest 
are turbulent and it is an observed fact that turbulence levels tend to fall with 
increasing Mach number (Lighthill 1954). Landahl (1967) has argued with some 
success that the unsteady properties of turbulent flow can be established by 
regarding the mean flow profile as excited by second-order effects to produce the 
first-order unsteady motions largely corresponding to the least stable modes of 
a steady inviscid flow with the same mean velocity profile. His theory is essentially 
linear and this present argument is in the same spirit. We postulate that for 
disturbances of long wavelength, linear modes of the mean velocity profile 
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(independent of the profile) can be superposed on the turbulent motion, so that 
the steady flow model provides a proper simulation of the real jet. 

The analytical scheme used in this paper is that developed by Miles (1958) 
to study the dynamics of compressible vortex sheets. We will examine in detail 
the double vortex sheet idealization of a two-dimensional jet. We find that the 
jet, unlike the isolated vortex sheet, is unstable to a wide range of disturbances 
for all Mach numbers. The main outcome of the study is the viewpoint that the 
jet can be regarded as a high gain broad band amplifier. The computation of the 
‘gain’, or the amplification rates of small disturbances, constitutes the details 
ofthe work. However, it is the general structure of the unsteady flow that we are 
now proposing to be of relevance to the jet noise issue. We argue its relevance 
as follows. We view the jet flow as an amplifier because small disturbances grow 
exponentially as they travel downstream. Any feedback loop on such an amplifier 
is liable to transform the system into a narrow band oscillator. This is our view 
of the jet ‘ screech’ phenomenon, an oscillatory condition common to non-ideally 
expanded cellular supersonic jet flows. The feedback loop is described by Powell 
(1953). A disturbance in the jet shear layer is convected downstream, and strikes 
a cell boundary to scatter intense sound by non-linear interaction. This sound 
propagates through the subsonic ambient fluid, interacts with the lip of the jet 
nozzle, and produces a new downstream travelling disturbance that continues 
the cycle. The essential element of the cycle, the gain in the strength of the down- 
stream travelling disturbance that supplies the energy to overcome radiation 
and viscous losses, is, we consider, a property of the basic mean flow and is 
present over a broad band of frequencies. It is only the frequency of operation 
that is set by the feedback loop. The details of the flow field are computable from 
stability theory once the frequency of oscillation is known from Powell’s argu- 
ment. According to this view the jet could be excited into harmonic motion at  
non-screech frequencies if driven by an oscillatory upstream disturbance. The 
resulting motion could be just as violent as that experienced by a jet in screech. 
In  particular the non-linear breakdown of the high amplitude shear layer per- 
turbation can bring about the rate of jet diffusion observed in a screeching jet- 
which is very much in excess of the rate of normal turbulent jet diffusion. It is 
currently being argued that the broad band noise of a supersonic jet will be 
minimized when the diffusion rate of Che jet is maximized, and it is to this aspect 
of the noise problem that we suggest this paper is relevant. Rapid jet spread is 
known to occur in screech as a result of amplified oscillatory motion. It is possible 
that it may be induced in non-screeching jets by forced oscillatory motion. The 
resulting motion would not inevitably be a powerful generator of discreet 
frequency sound. Though such sound would be present to some extent, we would 
not expect it to be of comparable magnitude to that of jet screech. The reason for 
this is that jet screech is dependent on acoustic feedback through the static 
environment. Any large amplitude oscillation must in that circumstance be 
associated with a large amplitude sound field. Indeed jet screech is a notoriously 
noisy phenomenon. In a forced jet the situation could be quite different since the 
jet motion would result from the internal seeding of an initial disturbance and a 
powerful discreet, sound field is in no way an essential or inevitable consequence. 
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The details of flow regimes that may be excited start with a study of the pos- 
sible linear motions of an ideal jet flow. Growth rates and mode shapes com- 
puted from this theory can form the starting point for a more quantitative 
description of the motions that we suggest are excitable in a real high Reynolds 
number jet flow. That study is described in this paper. 

2. Inviscid jet instabilities 
The inviscid instabilities of a jet will be studied by means of the following 

idealized problem illustrated in figure 1. An infinite, two-dimensional, inviscid 
jet with a constant velocity profile of arbitrary magnitude is separated from the 
motionless ambient fluid by infinite plane vortex sheets. Perturbed solutions 
of the form 

$i - e~p[iol(z-&+/3~y)] (j = 1 , 2 )  

are considered. The suffix ' 1 ' refers to the outer stagnant fluid and ' 2 ' to the jet 
region. Each of the two sets of solutions satisfies the appropriate wave equation, 

(1-M;) $jzz+$jyy-('/a?) [$jtt+'q$jztl = 0, (2) 

where Hi = Uj/uj, U, is the mean flow velocity and uj is the speed of sound in 
each region. ,!Ij is defined by 

= (cj- Mj)'- 1, (3) 

c .  3 = C/aj, and U, = 0, U, = U ,  M, = M .  

If one arbitrarily chooses the sign of the square root of p: such that Rep, > 0 
then the plus sign in (1) is chosen in the region above the jet so that disturbances 
propagate away from the jet, and similarly the minus sign is chosen for the region 
below the jet. In  region 2 within the jet there are two solutions, each using a 
different sign. 

FIGURE 1. Sketch of the idealized jet flow. 

By matching the perturbed pressure and displacement a t  the jet boundaries 
one obtains the following relations originally given by Miles (1  958) : 
For symmetric disturbances: 



154 

and for antisymmetric disturbances : 
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pi is the fluid density and H is the jet half width. 
Before discussing the solutions of the above equations, it will prove useful 

to review the sohtions for the case of a single vortex sheet separating two uni- 
form semi-infinite regions. 

By performing a similar linearized analysis and matching boundary conditions 
on either side of the single vortex sheet, one obtains 

p;(cz- M ) 4 p ~ - p ~ ~ ~ / ? ~  = 0. (6) 

Miles (1958) solved the initial-value problem for the vortex sheet to determine 
which of the solutions of (6) were physically relevant and he found that in the 
range 

both stable and unstable modes exist which are specified by the wave speed c,  

(7) 

c = frM&[(M2+ l)*-&(M2+4)]ai, (8) 

lUz-U,l < (%+a,), 

for the special case a, = a2. 
When a,+a, < /Uz-U,l < (ui+ut)+, (9) 

the previous solutions are valid, but one finds in addition one neutral solution 
which in the case of equal speeds of sound is given by 

c = *l!, (10) 

corresponding to the range 2 < M < 2 4 2 ,  (11) 

as given by (9). 
Finally, when (uf+ut )s  < p2-u11, 

the unstable and damped solutions disappear entirely and one is left with three 
distinct neutral modes. For equal speeds of sound these solutions are given by 
(8) and (10) with the second term in (8) now being real. 

Although (12) gives a criterion for the absence of unstable two-dimensional 
modes, Fejer & Miles (1963) have also shown that the system is always susceptible 
to three-dimensional instabilities, no matter how large the velocity jump, by 
considering disturbances which propagate at a sufficiently large angle to the 
x axis in the 5, z plane. We will consider two-dimensional disturbances with the 
knowledge that the final results can then be modified to incorporate three- 
dimensional effects. 

We note that Miles’s neutral solutions, found in the velocity ranges of (9) and 
( 1  2) will playan important part in high-speed noise production since the forcing of 
these solutions by acoustic radiation may lead to a resonance condition in which 
the magnitudes of the shear layer’s reflexion and transmission coefficients become 
infinite. Miles (1  956) gives the reflexion coefficient, R, for a plane wave in region 
(2) as 
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This result is valid for arbitrary velocities. Miles's paper should be consulted for 
the proper choice of signs of pj in this case of purely time periodic waves. 

Returning to the jet we look for solutions of (4) and (5) and ask if there is some 
frequency or wavelength which results in a definite maximum growth rate of 
the jet's instabilities. 

Two types of instability often studied are, (i) the temporal instability having 

I m a  = 0, (14) 

so that there is growth in time but a sinusoidal variation in space, and (ii) the 
spatial instability having 

Im(aZ) = ReaImC+ImaRec = 0, (15) 

so that there is growth in space but a sinusoidal variation in time at any point. 
Many disturbances in a jet appear to be of the latter type, i.e. a fixed pattern 
of oscillations relative to the jet nozzle, but other disturbances may also have a 
time-dependent character if they are triggered off at either random or periodic 
times. 

It will now be shown that there is no absolute maximum growth rate corre- 
sponding to some particular wavelength, but that the growth rate in either time 
or space increases without limit for increasingly large wave-number. 

In  the case of temporal instabilities in the incompressible Rayleigh jet problem 
one can easily show from (4) that for equal densities 

1 
U cothi ( a H )  
1 + coth (aH)  ' ImC = 

U coth ( a H )  
1 + coth (aH) ' ReF = 

for symmetric modes and a similar expression for antisynimetric modes. Thus 
Im w = a Im 6 --f cx) as a + 00 with Im C and Re C tending to definite limits. Let 
us then look for solutions in the general case in the limit la] +co with F again 
approaching a limit. 

With C complex, iap, will generally be complex so that if \a\ -+a, 

coth (ia/l,H) -+ 4 1, 

the choice of sign being due to the freedom allowed in choosing the sign of p,. 
In  this limit both (4) and (5) reduce to  (6), the equation governing the single 
shear layer with the corresponding values of 5. The reason for this is that whether 
we have spatial or temporal jet instabilities, the disturbance given by (1) decays 
away from the shear layer with an arbitrarily large exponential rate for an 
arbitrarily large value of la1 SO that the effects of one of the jet boundaries is not 
felt by the second one. To show that this solution is indeed approached as (a( +GO 

one perturbs (4) and (5) by letting 

c = c,+c", (17) 

where C,, is a solution of the infinite ]a[ jet, or single vortex sheet case, and one 
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finds that 
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c" = 2e-2L[cos 2?j - i sin 2fj] 

x: = - [ I m ~ t R e p , ~ + R e a I m ~ ~ ~ ] H ,  

g = [ R e a R e ~ , o - I m a I m ~ , O ] H ,  J 
where the plus sign applies to symmetric disturbances and the minus to anti- 
symmetric disturbances by arbitrarily choosing Imp, > 0. I n  the case of 
temporal instabilities Imw = a I m c  (19) 
and in the case of spatial instabilities 

I m a  = -ReaImc/Rec. 

Thus in either case (14) and (15) show that as lal+c~, Z+CO, E+O, and the 
growth rates given by (19) and (20) become linear in Re a except for the high 
Mach number range to be discussed next. 

Although the single vortex sheet is stable for all two-dimensional disturbances 
when the velocity jump is large enough to satisfy ( 1  2 ) ,  the jet is always unstable 
no matter how high the Mach number. The analysis for this latter case proceeds 
by writing (4) and (5) in the form 

i@,H = -+ln[+R],  (21) 

with the plus corresponding to (4) and the minus to (5). R is as written in (13), 
however, whereas C was real in the case of waves incident upon a vortex sheet, 
both C and R will be complex in the case of a jet. The results to be obtained for 
$he jet are independent of the sign convention used for p2 in R. 

Breaking (21) into its real and imaginary parts the equations governiiig 
symmetric disturbances become 

[ R e a I m p , + I m a R e ~ , ] H  = &lnlRI, ( 2 2 )  

[ReaRep2-ImaIm/3,]H= --&arg(R)knn (n= 0 , 1 , 2 ,  ...), (23) 

with R in (23) replaced by - R for the antisymmetric case. By using either (14) 
or (15) for temporal or spatial instabilities respectively, (22) and (23) become 
two equations in the two unknowns Im C, Re a as functions of Re C. 

Let us consider, for example, temporal instabilities in the large a limit where 
in the high velocity range given by (12) we expect ImC to be small since the 
infinite a solution is the neutral vortex sheet solution having Imc = 0. If 
Tm c2 < 1 one may make the following approximation: 

- (Re c2 - M )  Im c2 
[(Re c2 - M ) ,  - 114 ' 

Imp, 2: 

Rep, E - [(Re c, - - 114, (25) 

with the arbitrary choice of the minus sign before /I2. Then (22) and (23) become 

- [(Re c2 - M ) 2  - 114 
Imc, 2: 2aH(Re c2 - M) In IRI, 
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The initial assumption of Im c, < 1 follows from ( 2 6 )  if a H  9 1 which will happen 
according to ( 2 7 )  if n is sufficiently large. The infinite a solutions according to 
(8) and (10) have (Re c2 - M )  < 0 and with our choice of /?, one finds that I RI > 1 
so that In IRI > 0 and hence Imc, > 0, i.e. we have an instability. It is thus seen 
from ( 2 6 )  that Imw = O(u,/H) except near the single vortex sheet resonant 
condition for which R-l+ 0 (for the assumed sign of /3, or R -+ 0 if the other 
sign had been chosen) where Im w = O( (u,/H) In a H )  so that the growth rate 
depends logarithmically on a for large a. 

This can be better understood by the following model. If one now moves to 
a reference frame translating to the right with the speed U,, then the jet fluid will 
appear to be stationary and the external fluid will have a mean motion in the 
negative x direction. If Im c, < 1 ray theory may be able to give us an adequate 
description. Consider that some disturbance has been excited at a point x = 0 
within the now stationary jet fluid. The emitted rays will travel along straight 
line trajectories until they strike one of the vortex sheets whereupon they will 
be reflected at  the incident angle, following the new straight line trajectory until 
they are reflected by the second vortex sheet and so on. After each reflexion the 
incident wave disturbance is multiplied by a factor of R corresponding to its 
angle of propagation. After many reflexions one could then write 

$ = $oRUX, ( 2 8 )  

where u equals the number of reflexions per unit length along the x axis, which 
in this case would be 

tan i3 
2H ’ (29) u=- 

where 0 is the propagation angle measured with respect to the x axis, as is 
illustrated in figure 2.  

F- U 

u,=o - c 
X 

-6 

FIGURE 2. Sketch illustrating symbols used in discussion of jet resonance. 

The magnitude of $ is 191 = I $ o l  IRlztano’zH 
and its change along the x axis is 



158 C .  H .  Berman and J .  E. Ffowcs Williams 

If one now follows an individual pulse travelling at the angle 8, then the time 
required for it to travel a unit distance (including reflexions) in the x direction is 
cos 8 times the speed of sound, so that changes in time following the pulse may be 
related to changes in x in the following manner 

with 

a a 
at ax 
- = a2 cos 19- 

Upon substitution of (32) and (33) into (31) one finds that the exponential growth 
rate that this model predicts is identical to that given by (26) in the limit of 
small Imc,. Note also that although the amplified rays propagate upstream 
through the jet fluid they actually grow in the downstream direction relative to  
the external region due to the large convective velocity of the jet. 

The analysis follows analogously for spatial instabilities, and one finds, either 
by use of the model described by (31) with the appropriate change of reference 
frame or from (20), (22)-(25), that the spatial growth rate is 

[(Rec2-M)2- l]iln IRI 
2H[M(Re c2 - M )  + I] ’ I m a  2: (34) 

3. Conclusions 
The double vortex sheet model shows that the growth rates of instabilities are 

unbounded as a increases. In  reality the vortex sheets are actually shear layers 
of finite thickness. We first point out that the discontinuous velocity jump is 
a valid limit if we let the ratio of the shear layer thickness 6 to wavelength A tend 
towards zero. Graham & Graham have studied the case of a single shear layer 
having a linear velocity profile, and one can show from their analysis that the 
finite thickness profile solution does approach Miles’s result for &/A+ 0. 

The effect of finite shear layer thickness on the jet may be inferred from the 
Rayleigh jet case. Rayleigh studied a trapezoidal velocity profile and showed 
that the rectangular profile result is attained in the limit 6/h --f 0. However, of 
greater importance is the case when S / A  = O(l),  for then it is found that aImij 
does reach a maximum. An analysis for the compressible jet is more difficult, but 
we would expect to find that the maximum value of the growth rate Occurs 
when a13 = O(1). 

Current jets which experience screech generally operate in the lowest velocity 
range given by (7 )  or possibly in the lower portion of the region given by (9). In  
these regions there are fast growing modes which behave qualitatively very 
much like those of the incompressible jet. In  general it appears that the jet is 
extremely susceptible to a wide range of instabilities. It constitutes a high gain 
broad band amplifier. 

If the shear layer is thin, then frequencies of O(a/8) will result in the maximum 
rate of growth which will have its greatest initial effect near the shear layers 
with an exponential decrease in amplitude as the centre of the jet is approached. 
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According to the linearized theory the instability will spread rapidly into the 
core of the jet in a distance of O(H).  The disturbance will quickly grow to such 
a magnitude near the jet boundaries that it will develop into turbulence, possibly 
before the linear disturbance has a chance to penetrate into the bulk of the jet. 
A lower frequency instability, e.g. O(a/H)  (note that screech frequencies are of 
this order also), will result in slower growth rates, though the disturbance will 
still become large in a distance of O(H) ,  but a larger volume of the jet will be 
affected. 

To summarize, the double vortex sheet model o f  the jet shows that com- 
pressible jets are basically as unstable as incompressible ones. Although the 
nature of the instability is different at  very high jet speeds, the jet is always 
unstable no matter how high the jet Mach number. 

In order to fully predict the behaviour of the jet, one must include the effects 
of non-linearity, finite shear layer thickness as well as other pertinent features 
of the real jet. It is likely though that modes can be excited which will greatly 
alter the characteristics of the jet. 
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